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Abstract. - The main part of this paper is a reproduction of (previously unpublished) 
lecture notes, which were circulated in 1971, and which are often cited as the initiation of 
two-dimensior.al NTviR spectroscopy. A brief discussion follows, about the way of handling 
dates and durations in time-dependent quantum mechanics, and about the use o~ diagrams 
in NMR pulse spectroscopy in the usual or the superopcrator formalisms. 

I. Introductory remarks (1993). 

The usual reference for the initiation of "two-dimensional" NMR spectroscopy refers 
to a talk which I gave at the AMPERE Summer School in Basko Polje (Yugoslavia) in 
September of 1971, and to unpublished notes written shortly after this meeting. It is a 
great pleasure to present these notes here (in section II), together with comments about 
the use of diagrams in pulsed high-resolution NMR (in section III), as a tribute to my 
professor, colle.Rgue and dear friend Anatole Abragam. 

In 1971, many experiments had already been performed, in which the spin response 
was studied after a sequence of two (or more) pulses, with the variable separation be­
tween these pulses as an essential parameter. Well known examples of this procedure 
are the observation of the J-coupling in liquids by Hahn and Maxwell [l] and the ma­
nipulation of dipo1ar order by pulse techniques in solids (2]. I still remember searching 
for a long time, without success, for a pulse technique which would give results of the 
type presently given by NOESY, and ending up, almost in despair, with the COSY-like 
proposal of 1971. An important coworker in these efforts was Gerrit Alewaeters [3, 4]. 
Clearly, similar dreams developed in the minds of many people at that time, and a short 
conversation was often enough to convey the complete contents of the 1971 notes. 

Very soon, it became clear that the idea had been presented for a very particular case, 
and also that it was not easy to turn into an efficient, practical tool. It has been very 
exciting for me to watch (and participate in) the impressive flourishing of theoretical 
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and experimental imagination which eventually made the success of 2D spectroscopy 

and its variants (see, for instance the book by Ernst, Bodenhausen and Wokaun (5]). 

(Beginning of the 1971 lecture notes) 

II. Pulse pair technique in high resolution NMR (1971). 

by J. Jeener and G. Alewaeters 
Faculty of Sciences, University of Brussels (ULB and VUB), Brussels, Belgium 

(Preliminary manuscript, incomplete, November 14, 1971) 

Il.l lNTHODUCTION. 

The usual CW and one-pulse Fourier transform methods of high-resolution NMR in 

liquids only provide very incomplete information about the nuclear spin Hamiltonian in 

the case of coupled spins. Additional information has been obtained by pelforming the 

measurements for different values of the external magnetic field, and by double reso­

nance techniques. Essentially the same additional information about the nuclear spin 

Hamiltonian can also be obtained by the new technique proposed here. 

A first r.f. pulse (90°) is applied at time t = 0 to the spin system in thermal equilibrium 

with the lattice. At time t = t 1, a second r.f. pulse (90° or 180°), coherent with the first 

pulse is applied and the transient nuclear magnetization is then measured as a function 

of the time t2 elapsed since this second pulse. A large number of such measurements 

are performed for different values of t1. A double Fourier transform is then performed 

on these values, with respect to the variable ti (frequency w1) and to the variable t2 

(frequency w2). A theoretical discussion shows that inspection of this double Fourier 

transform immediately reveals which lines of the ordinary absorption spectrum do or do 

not belong to the same group of coupled spins, and that more detailed and quantitative 

information can be obtained easily. This technique should provide the same favorable 

signal-to-noise ratio as ordinary Fourier transform spectroscopy, and the quantitative 

interpretation of its results is simpler than that of double resonance techniques. 

II.2 DENSITY MATRIX CALCULATIONS. 

(in the case of a single kind of nuclear spins, neglecting spin-spin and spin-lattice relax­

ation) 
In this section, we shall focus our attention on the spins in a single molecule. 

II.2.1 Spin 1-Jamiltonian. 

In the case of a single magnetic ingredient, we can write the time-averaged spin Hamil­

tonian for one molecule of the liquid in the form 

H = Ho + Hss ( + Hrf) (1) 
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where Ho = hwolz; wo is an arbitrarily chosen frequency, in the neighborhood of the 

NMR frequency of the relevant nuclei (in practice, it is convenient to call w0 the fre­

quency of the master oscillator of the pulse spectrometer); Iz is the component of I in 

the direction of the large constant external magnetic field (the z-direction); I is the sum 

of the spin operators for all the spins in the molecule; Hss describes the chemical shifts 

of the various spins, the spin-spin couplings, and a term which compensates for the ar­

bitrary choice of w0 ; and Ilrc describes the effects of the pulses of resonant transverse rf 

magnetic field applied to the spin system. 
As Hss is very much smaller than Ho in the present case, the effects which we shall be 

interested in can be discussed by means of the first order approximation eigenvalues of 
Ho + Hss and of the corresponding zeroth-order eigenfunctions. These approximations 

are equivalent to replacing H 55 in the spin Hamiltonian (1) by the part H' of H55 , which 

commutes with H 0 , so that the approximate spin Hamiltonian can be written as 

H =Ho+ H'(+Hrr). (2) 

Ho and H' are diagonalized simultaneously by the eigenstates Ja) which we shall use later 

on: 

Ho la.) 

H'la) 

lvfahwola) 

hwa]a). (3) 

lvla is an integer (or a half-integer in the case of an odd number of half-integer spins), 
and a is just a label which compJetely specifies one eigenstate. 

II.2.2 Rotating frame. 

For simplicity, we shall discuss the dynamical behavior of the spin system in a frame of 
reference which rotates around the direction of the external magnetic field at the angular 

velocity c...i·0 (approximately the NMR frequency of the spins). The components of any 

vector B along the X and Y directions of the rotating frame will be denoted by i3 x and 

By. Every operator A in the laboratory frame can be described in the rotating frame by 
an operator A given by 

A = 11t_4 V, where V = exp(-i wo t Iz) · (4) 

In the approximation (2), the equation of motion for the density operator can be written 

as 
(5) 

In the absence of rf irradiation, the formal solution of this equation is 

p(T + t) = Q(t) p(T) QI (t) where Q(t) =- exp {-(it/h)JJ'}. (6) 

The effects of a short, intense, pulse of resonant rf magnetic field on the density matrix 

can be described, in the rotating frame, by the finite rotation operator 

R(e, 4;) = exp {-iB (Ix cos <P + Jy sin 4;)}, (7) 
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where() is the magnitude of the pulse and </>its phase. The spin property which is usually 
measured experimentally is one of the transverse components of the average spin mag­
netization in the laboratory frame, for instance (Ix) . This quantity can be expressed in 
terms of the X and Y components of the spin magnetization in the rotating frame as 

(lx) coswot + (fy) sinw0 t = real part of { (l+) exp(iwot)}, (8) 

where (l+) (ix)+ i(fy) = Tr{l+P}. It is clear from this expression that the 
nuclear induction signals originating from (ix) and (Jy) have orthogonal rf phases, 
and that these two quantities can be measured simultaneously by the use of a coherent 
instrumentation with two orthogonal phase sensitive detectors. The trace calculations 
which follow can be somewhat simplified by the introduction of the quantity ( l +) instead 
of (ix) and (Jy ). 

11.2.3 Single pulse experiments. 

As a preparation for the discussion of the two-pulse experiments, let us first use the same 
techniques and notations in the well-known case of single pulse "Fourier spectroscopy". 

We shall always assume that the spin system has reached complete thermal equilibrium 
with the lattice before each experiment. In the standard high temperature approxima­
tion, the corresponding equilibrium density matrix can be written as 

A l { hwo } Peq = Pcq = z 1 - kT I z , (9) 

where T is the lattice temperature and Z is a normalization constant. 
Let us now apply to the spin system a 90° pulse oriented in the Y direction of the 

rotating frame. This pulse will rotate the spin magnetization from the z direction to the 
X direction and the density matrix immediately after the pulse, p(O+ ), can be written as 

A 1 { hwo - } 1 ( - - ) p(O+) = z 1 - kT Ix = z - a: I+ + J _ , (10) 

where n = hwo/2JcT Zand l ± = ix± Jy. At a time t 1 after the pulse, the density matrix 
will be given by 

p(t1) = ~-o.Q(tt){l++f-}QT(t1), 
and the measurable quantities can be summarized as 

(11) 

(12) 

Expression (12) for (i+) can be easily written under the more familiar form (13) by 
performing the following steps: 

1) evaluate the trace as a sum of diagonal matrix elements in the representation de­
fined by (3), 

2) note that Q(t1) is diagonal in this representation and that (alQ(t1) la) = exp(-iwat1), 
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3) note that (all+ lb) can be different from zero only if A1a = Mb + 1. 

(i+) -a· I:(a!i+lb) e-iw1,t1(bll-la) eiw"l1 

a ,b 

-a L I (alL1-lb) 12 ei(wa - w 1, )t.1 . (13) 
a,b 

This expression shows that the Fourier transform of (l+) after one pulse consists, as is 

well known, of one line at each of the NMR frequencies (wa - wi,) of the spin system, 

the intensity of each line being proportional to the corresponding value of I (all+ lb) 1
2

. 

The quantities (wa - wb) are the rotating frame NMR frequencies, which are related to 

the usual laboratory frame NMR frequencies by the obvious equation W(NMR, lab .framt:) 

WO+ W(NMR , rot.frame) · 

11.2.4 Two pulse experiments. 

Each two-pulse experiment begins in the same way as the one-pulse experiment de­

scribed above. A·t time t 1, a second pulse, described by the finite rotation operator R, is 
applied to the spin system. At time t 1 + t2 , which means t2 after the second pulse, the 

densily matrix will be given by 

and the transverse magnetization by 

Using the steps which lead from (12) to (13), we can rewrite (15) under the following, 

more usable, form of a double Fourier transform of (l+) with respect to the two inde­

pendent time variables t 1 and t2: 

a,b,c ,d 

a,b,c,d 

Figure 1 provides a diagram-like representa!ion of one non-zero term of the first sum­

mation in (16) and one non-zero tenn of the second summation. 
Let us denote by w1 the frequency which is associated with t 1 in this double Fourier 

transform, and w2 that associated with t 2. The presence of matrix elements of i+ and J _ 
in (16) immediately shows that the double Fourier transform of (i+) at w1 and w2 can 

be different from zero only if w2 is one of the NMR frequencies of the spin system and 

w1 is either one of these frequencies (first term in the rhs of (16)) or minus one of these 

(second term of the rhs of (16)). 
The absolute value of the relevant matrix elements of i+ and i_ can be obtained 

experimentally from the ordinary NMR absorption spectrum, so that a complete set of 
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Fig. 1. - Diagram representation of one non-zero term in each of the two summations in equation 
(16). The direction around the loops corresponds to reading equation (16) from right to left. 

two-pulse experiments, followed by a double Fourier transform, provides a lot of direct 
information about the matrix elements of the finite rotation operator Rand thus, also, 
about the spin Hamiltonian. One should note, in this connection, that it is quite frequent 
that a number of different transitions in a molecule do contribute to the same NMR line. 
Whenever this happens, the quantities actually measured are of course the sums of all 
the terms in (16) which correspond to given values of w1 and w2. One should also note 
that the finite rotation operators R do have less restrictive selection rules than l+ and 
J _: for instance, if two eigenstates can be individually connected by a chain of non-zero 
matrix elements of l + and J _,they are in general directly connected by a non-zero matrix 
element of R. 

Let us now imagine that t_he liquid under consideration contains different kinds of 
molecules. The ordinary NMR spectrum will, then, be the superposition of the spectra 
of each of the molecular species, and the response in a two pulse experiment will also 
be the superposition of the responses of each species. In particular, the double Fourier 
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transform of ( i +) will contain 110 non-zero terms for which w1 (or -w1) and w2 corre­
spond to NMR frequencies of different molecules. As a consequence of this remark, the 
existence of a non-zero term in a double Fourier transform of ( i +) implies that the two 
relevant NMR frequencies do belong to the same molecule. 

If the spins in a molecule can be sorted out in two different groups, such that no spin 
in one group is coupled to any spin in the other group, then the two spin groups will 
in fact behave as though they belonged to different molecules . The above discussion 
then shows that the existence of a non-zero term in a double Fourier transform of (l+) 
implies that the two relevant frequencies belong to the same group of coupled spins. In 
this way, the two-pulse technique can be used as an alternative to double resonance in 
the sorting out of NMR lines in families. 

ll.3 J\tlISCELLANEOUS NOTES . 

II.3.1 General organization of an experiment. 

After each two-pulse sequence, the nuclear induction signal must be recorded as a func­
tion of t 2 after the ~econd pulse; a large number of such two-pulse sequenct~s must be 
studied in order to examine the influence of the time separation t 1 between the two 
pulses; the double Fourier transform must be evaluated, displayed, understood. 

All this seems to imply the manipulation, storage, ... ,of a prohibitively large quantity 
of information. One possible way of actually performing the experiment would be the 
folJowing: 

(a) after each two-pulse sequence, one computes the Fourier transform of the nuclear 
induction signal at a few well chosen NMR frequencies w2 , and these results are stored 
on tape, together with the corresponding value of t1, 

(b) this procedure is repeated for a large number of values of t 1, storing all the results 
on tape, 

( c) the tape is read, and a complete Fourier transform in w1 is computed for each of 
the chosen values of w2. 

Il.3.2 Sensitivity of the method. 

Let us focus our attention on two NMR lines, at (wa - W1>) and (we - wcl), which we shall 
assume to be of equal intensities and to originate each from a single transition in the spin 
system. A comparison of expressior1s (13) and (16) then shows that the double Fourier 
transform at (wa -wb) and (we -wd) is smaller than the single Fourier transform at each 
of these frequencies by a factor (blR!d)(c!Rtla) which is, roughly speaking, of order 1/N, 
where N is the number of eigenstates of the relevant group of coupled spins which can 
be reached from la) by means of the operator R. In many interesting cases, N is not 
larger than 10. 

The factor (bjRjd)(c!Rt ja) is also roughly the ratio of signal-to-noise ratios which can 
be achieved in a same length of time for the detection of the peaks in the double Fourier 
transform and in the single Fourier transform. 
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Il.3.3 Some other advantages of the double pulse method. 

- Very simple theory (no rf ON, except for two short pulses). 
- No role played by spin-lattice relaxation, Overhauser effect, ... 
- No special problem in the case of two close-by lines. 
- Direct quantitative information about the matrix elements of R. 
- Lots of information gathered in a single run. 
- Possibility of correcting for frequency or phase drift during the run, by software. 

(End of the 1971 lecture notes) 

III. Improved diagram representations (1993). 

I have found diagrams of the type shown in Figure 1 very convenient to visualize the 
structure of the various contributions to 2D and nD spectra, and also in attempts to 
devise new pulse sequences generating such spectra. However, the improvements de­
scribed in the following subsections make these diagrams more readable, hence more 
useful. 

Ill. l EMPHASIZING THE ROLE OF Tli\,lE (i.e. DATE). 

The closed loop structure of the diagrams in Figure 1 was meant to display the cyclic 
property of equation (16) as far as states are concerned: reading from right to left, for 
instance, one starts in state a, goes through states b, c and d, and eventually comes back 
to state a. This situation is more explicitly shown by the following intermediate between 
equations (15) and (16): 

(i+) = 
-o: I: (a]I + ]b)(blQ( t2) lb)(blR.ld)( dlQ( t 1) ld)(d!I-lc)(ciQ1( ti) !c)(clR.t la)(alQt( t2) la) 

u,b,c,d 

+second term in equation (25) . 
(17) 

Equations of types (15), (16) or (17) are also cyclic in time or, more exactly, in date: 
reading the first term in the r.h.s. of equation (17) from right to left, one starts at the 
date of the measurement, goes back in steps to the date immediately after the first pulse 
(where the relevant part of p is J _ ), then proceeds forward in steps, eventually coming 
back to the date of measurement of \l+ ). 

Discussions in which dates play an essential role will be clarified by the introduction of 
an appropriate notation. In the present paper, 'Ne shall denote dates by the greek letter 
T, and durations by the latin letter t (in both cases with indices as needed). Evolution 
operators will be written as U(T2, Ti), with the usual property j'l,b(T2)) = U(T2 1 r 1)11/i(T1 )), 
and the relations with the notation of the 1971 notes (Eq. (6)) are 

Q(t) ~ U(r+t,r) and for any r, (18) 
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where the interaction representation version of U(T2 , T1) is given by (1 )(see Eq. (4)) 

(19) 

The rotation operator R (Eq. (7)), describing the effects of a short rf pulse applied 
at date T, will also be written as an evolution operator acting between dates T _ and T + 
(respectively immediately before and after the pulse), and the relations with the notation 
of the 1971 notes (Eq. (7)) are 

and (20) 

With these changes in notation, also denoting by To (instead of 0) the date of the first 
90° pulse, equation (17) takes the form 

(i+) = 
-a 2: (all+ lb)( bi U( t2+t1+ro, t1+ro+ )lb)(blR(tr-1--ro+, t1+ro_) ld)(dlU(tr+ru_, ro+) id) 

a,b,c,d 

x (dll- lc)(c!U( To+, t1+ro-) jc)(clR(lr+ro_, t1+ro+) la)(alU(t1+ro+, t2+t1+ro) la) 
+second term in equation (16). 

(21) 
The left part of Figure 2 provides a diagram-like representation of one non-zero term of 
the summatipn displayed in equation (21 ), with the date explicitly shown as the horizon­
tal coordinate. This type of diagram makes the detailed date and state structure obvious, 
and emphasizes the fact that, in each term of the sum, each evolution operator (of type 
0 or R) appears twice with opposite order of the date arguments. Of course, the two 
occurrences of one same operator do not describe independent transformations, hence 
the redundancy is undesirable for the sake of clarity, and one is tempted to lump the 
offenders together as suggested by the diagram in the right part of Figure 2. One of the 
many advantages of the "Liouville space" or "super-operator" presentation of quantum 
mechanics is to provide a simple and natural way of achieving this goal. 

Ill.2 USING A SUPERKET-SUPERBRA-SUPEROPERATOR FORMALISM. 

III.2.1 Brief summary about superoperators. 

Details about the point of view and notation used here can be found, for instance, in 
references [5] and [6]. 

To each linear operator A (in practice, density operator or observable), we associate 
a superket I A~, where a non-traditional subscripts is used here to distinguish superkets 
from standard kets. To each linear operator B, we also assQciate a superbra 

5
(B j, using 

the trace metric and requiring that 

for every operator A.. (22) 

( 
1

) In reference [6], the role of V is played by an evolution operator involving two dates. I feel 
that this was an unfortunate choice, and that a unitary operator involving a single date should be 
used, as explained in references [7] and [8}(appendix D). 
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t1+To+ t1+ro_ 

Fig. 2. - Improved diagram representations of one non-zero term in the first summation in equa­
tion (16). The horizontal coordinate now corresponds to time (i.e. date) , running from right to 
left to match the usual typography. The diagram on the left is for the usual kct-bra-operator for­
malism, the direction around the loop still corresponds to reading equations (16) or (21) from 
right to left. The relation between the ordering of states and dates in this diagram and in equation 
(21) is the following: (e!D(T2 , T 1)1!) is represented in the diagram by a segment along 'Nhich one 
goes from f towards e and from TJ towards T2 when moving in the direction shown by the arrow(s) 
(irrespective of whether TJ is earlier or later than T2 ). The same convention holds for the oper­
ators R. With this convention, it is no longer necessary to explicitly indicate the date arguments 
of the operators in the diagram. The right part of the figure suggests a way of grouping the two 
versions of each evolution operator corresponding to the same pair of dates, and gives hints about 
the corresponding superoperator notation (sec also Fig. 3). 

Linear transformations of_superkets will be described as superoperators, and denoted 
here by script symbols, e.g. U, R or£, with the exception of the unit superoperator ls. 
The action of a superoperator on a superbra is defined by requiring that ~AIOIB~ 
(~AIQ) IB~ = ~Al (OIB~) for any A an<l B. 
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The set of superkets { IAi~} is a basis (in superket space) if it satisfies the orthonor­
mality and closure relations, respectively 

and (23) 
i 

An important particular type of transformation of operators consists in taking any 
operator Bin a sandwich between operators A and C, leading to the new operator F = 
ABC. The superoperator counterpart of this can be written as 

IF~= IABC~ =VIE~ where 'D =Ax C, (24) 

where the decomposable superoperator 'Dis composed of the operators A and C. 
With this notation, the usual Von Neumann equation of motion 'iliop(T) /OT 

[H(T), p(T)] can be written as 

?Ji :T !P(T)k = C(r)jp(T)~ where £(T) = (H(r) X ls) - (ls X H(T)), (25) 

where .C( T) is called the Liouvillian. The interaction representation transformation ( 4) 
now takes the form 

(26) 

and V ( T) = exp( -i wo TI z ), and the motion in the absence of rf irradiation is described 
by obvious extensions of (6) and (19): 

Using a similar notation for the rotation operators, we can write expression (15) for (l+) 
under the form 

where the date now increases systematically towards the future when the formula is read 
from right to left, and the evolution during each time interval is completely described by 
a single superoperator. 

III.2.2 Diagrams for superoperators. 

The formal expression (28) can be ~valuated by inserting closure relations (23) on both 
sides of each superoperator: 

i,_j,k,l 

(29) 

If the basis superkets jAi~ are chosen to be eigensuperkets of the Liouvillian £,they are 
also eigensuperkets of the evolution superoperator U, hence the terms in (29) will differ 
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Fig. 3. - Superoperator diagrams. 111e notation is that of equation (29) in the particular case of 
a level-shift basis constructed with the eigenstates of the Hamiltonian. The horizontal lines are 
labeled by the superprojectors which appear in the closure relation (23) for superkets. The left­
right ordering in these diagrams is exactly the same as the typographical order in equation (29). 
This figure shows the co.ntribution to (I+) for which the left part of Figure 2 gives an operator 
diagram. 

from zero only if i = j and k = l, considerably simplifying the expression. In the present 
case, a suitable basis (in superket space) can be constructed with the set of level-shift 
operators { la)(bl} of the ket basis (3) which diagonalizes the Hamiltonian. The superket 
basis { j !a)(bl~ (for all a and b)} diagonalizes the Liouvillian (25), 

£I !a)(bl k = h(wcL - w1,) ! la)( bi~' (30) 

and the evolution superoperator U, 

(31) 

as can be checked easily using the following general property of all superket bases con­
structed with level-shift operators (see for instance Ref. [6]): 

s\la)(bll (Ax B) llc)(dl~ = (a!Alc){dlBlb). (32) 

One term of the summation (29), obtained with this superket basis, is shown in the 
top part of Figure 3 and in the right part of Figure 2. With the help of the figures and 
of the above expressions, one can easily verify the equivalence of expressions obtained 
with the ket-bra-... and with the superket-superbra-... formalisms for problems in which 
relaxation is ignored. As a further example of the use of superoperator diagrams, Figure 
4 shows a more complete description of two-pulse experiments, in which the two pulses 
are treated explicitly and the initial condition is described in terms of populations of the 
eigenstates of the Hamiltonian. 
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Fig. 4. - Superoperator diagrams drawn with the same conventions as in Figure 3. This figure 

gives a more complete representation of a two-pulse experiment, starting with thermal equilibrium 

for T <To- , and describing the two pulses Ru at date To and 'l<-1 at date t 1 +To. The diagrams show 

the contributions, arising from the equilibrium populations of the eigenstates b, c and d of the 

Hamiltonian, respectively to the left diagr.am of Figure 1 (top) and to the right diagram of Figure 

1 (bottom). 

However, in any attempt to take relaxation into accouat, the use of a superoperator 
formalism is not a matter of elegance or personal preference any more, but one of ne­
cessity. Under these circumstances, the convenient bases in superket space are usually 
not constructed from level shift operators, the corresponding expressions do not have 
simple equivalents in terms of kets, bras and operators, but superoperator diagrams can 
still be useful to organize and visualize the calculations. 
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