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Abstract. — The main part of this paper is a reproduction of (previously unpublished)
lecture notes, which were circulated in 1971, and which are often cited as the initiation of
two-dimensior.al NMR spectroscopy. A brief discussion follows, about the way of handling
dates and durations in time-dependent quantum mechanics, and about the use of diagrams
in NMR pulse spectroscopy in the usual or the superoperator formalisms.

I. Introductory remarks (1993).

The usual reference for the initiation of “two-dimensional” NMR spectroscopy refers
to a talk which I gave at the AMPERE Summer School in Basko Polje (Yugoslavia) in
September of 1971, and to unpublished notes written shortly after this meeting. It is a
great pleasure to present these notes here (in section II), together with comments about
the use of diagrams in pulsed high-resolution NMR (in section III), as a tribute to my
professor, colleague and dear friend Anatole Abragam.

In 1971, many experiments had already been performed, in which the spin response
was studied after a sequence of two (or more) pulses, with the variable separation be-
tween these pulses as an essential parameter. Well known examples of this procedure
are the observation of the J-coupling in liquids by Hahn and Maxwell [1] and the ma-
nipulation of dipolar order by pulse techniques in solids [2]. I still remember searching
for a long time, without success, for a pulse technique which would give results of the
type presently given by NOESY, and ending up, almost in despair, with the COSY-like
proposal of 1971. An important coworker in these efforts was Gerrit Alewaeters [3, 4].
Clearly, similar dreams developed in the minds of many people at that time, and a short
conversation was often enough to convey the complete contents of the 1971 notes.

Very soon, it became clear that the idea had been presented for a very particular case,
and also that it was not easy to turn into an efficient, practical tool. It has been very
exciting for me to watch (and participate in) the impressive flourishing of theoretical
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and experimental imagination which eventually made the success of 2D spectroscopy
and its variants (see, for instance the book by Ernst, Bodenhausen and Wokaun [5]).

(Beginning of the 1971 lecture notes)

II. Pulse pair technique in high resolution NMR (1971).

by J. Jeener and G. Alewaeters
Faculty of Sciences, University of Brussels (ULB and VUB), Brussels, Belgium
(Preliminary manuscript, incomplete, November 14, 1971)

11.1 INTRODUCTION.

The usual CW and one-pulse Fourier transform methods ol high-resolution NMR in
liquids only provide very incomplete information about the nuclear spin Hamiltonian in
the case of coupled spins. Additional information has been obtained by performing the
measurements for different values of the external magnetic field, and by double reso-
nance techniques. Essentially the same additional information about the nuclear spin
Hamiltonian can also be obtained by the new technique proposed here.

A firstr.t. pulse (90°) is applied at time ¢ = 0 to the spin system in thermal equilibrium
with the lattice. At time ¢ = ¢, a second r.f. pulse (90° or 180°), coherent with the first
pulse is applied and the transient nuclear magnetization is then measured as a function
of the time ¢, elapsed since this second pulse. A large number of such measurements
are performed for different values of ¢. A double Fourier transform is then performed
on these values, with respect to the variable ¢; (frequency wi) and to the variable ¢,
(frequency w;). A theoretical discussion shows that inspection of this double Fourier
transform immediately reveals which lines of the ordinary absorption spectrum do or do
not belong to the same group of coupled spins, and that more detailed and quantitative
information can be obtained easily. This technique should provide the same favorable
signal-to-noise ratio as ordinary Fourier transform spectroscopy, and the quantitative
interpretation of its results is simpler than that of double resonance techniques.

II.2 DENSITY MATRIX CALCULATIONS.

(in the case of a single kind of nuclear spins, neglecting spin-spin and spin-lattice relax-
ation)
In this section, we shall focus our attention on the spins in a single molecule.

11.2.1 Spin Hamiltonian.

In the case of a single magnetic ingredient, we can write the time-averaged spin Hamil-
tonian for one molecule of the liquid in the form

H = Hy + Hgs (+Hrf) (1)
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where Hy = hw,I.; wo is an arbitrarily chosen frequency, in the neighborhood of the
NMR frequency of the relevant nuclei (in practice, it is convenient to call wy the fre-
quency of the master oscillator of the pulse spectrometer); I, is the component of I in
the direction of the large constant external magnetic field (the z-direction); I 1s the sum
of the spin operators for all the spins in the molecule; Hys describes the chemical shifts
of the various spins, the spin-spin couplings, and a term which compensates for the ar-
bitrary choice of w,; and H,; describes the effects of the pulses of resonant transverse rf
magnetic field applied to the spin system.

As Hy is very much smaller than Hj in the present case, the effects which we shall be
interested in can be discussed by means of the first order approximation eigenvalues of
Hy + Hgs and of the corresponding zeroth-crder eigenfunctions. These approximations
are equivalent to replacing Hy, in the spin Hamiltonian (1) by the part H' of Hys, which
commutes with Hy, so that the approximate spin Hamiltonian can be written as

H=Hy+ H (+H,-f). ¥4

Hyand H’ are diagonalized simultaneously by the eigenstates |a) which we shall use later
on:

Hpla) = Mihwola)
H'la) = hwela). (3)

M, is an integer (or a half-integer in the case of an odd number of half-integer spins),
and a is just a label which completely specifies one eigenstate.

11.2.2 Rotating frame.

For simplicity, we shall discuss the dynamical behavior of the spin system in a frame of
reference which rotates around the direction of the external magnetic field at the angular
velocity wy (approximately the NMR frequency of the spins). The components of any
vector B along the X and Y directions of the rotating [rame will be denoted by Bx and
By . Every operator A in the laboratory frame can be described in the rotating frame by
an operator A given by

A4 =VIAV, where V =exp(—iwgt L.). (4)

In the approximation (2), the equation of motion for the density operator can be written
as

o A,
= B = ! 5
ih = A1) [{H + s}, p(t.)]. (5)
In the absence of rf irradiation, the formal solution of this equation is
pr+1) = Q(t) p(r) Q'(t) where Q(t) = exp{—(it/h)H'}. (6)

The effects of a short, intense, pulse of resonant rf magnetic field on the density matrix
can be described, in the rotating frame, by the finite rotation operator

R(8,4) = exp{~if (Ix cos ¢+ Iy sing)}, (7)



268 J. Jeener

where 6 is the magnitude of the pulse and ¢ its phase. The spin property which is usually
measured experimentally is one of the transverse components of the average spin mag-
netization in the laboratory frame, for instance (I;) . This quantity can be expressed in
terms of the X and Y components of the spin magnetization in the rotating frame as

(I.) = (Ix)coswot + (Iy)sinwgt = real part of {(I;)exp(iwgt)}, (8)

where (I1) = (Ix)+i{ly) = Tr{I;p}. Itis clear from this expression that the
nuclear induction signals originating from (/x) and {(Iy) have orthogonal rf phases,
and that these two quantities can be measured simultaneously by the use of a coherent
instrumentation with two orthogonal phase sensitive detectors. The trace calculations
which follow can be somewhat simplified by the introduction of the quantity (I ) instead
of <fx> and (jy>

I1.2.3 Single pulse experiments.

As a preparation for the discussion of the two-pulse experiments, let us first use the same
techniques and notations in the well-known case of single pulse “Fourier spectroscopy”.

We shall always assume that the spin system has reached complete thermal equilibrium
with the lattice before each experiment. In the standard high temperature approxima-
tion, the corresponding equilibrium density matrix can be written as

,, 1 flw(] )
pequcqzz{l—ﬁl‘:}» 9)

where T is the lattice temperature and Z is a normalization constant.

Let us now apply to the spin system a 90° pulse oriented in the Y direction of the
rotating frame. This pulse will rotate the spin magnetization from the z direction to the
X direction and the density matrix immediately after the pulse, 5(0,.), can be written as

n | hw() = 1 - .
= o d1 B0 rl o ST
p(04) = {1 - IA} Z (I +1-), (10)
where o = hwy/2kTZ and I = Ix +[y. Atatime ¢, after the pulse, the density matrix
will be given by

A 1 Y

Alty) = Z —aQ(t1) {1+ + I-} QT(t1), (11)

and the measurable quantities can be summarized as
(I:) = —aTe{1,.Q(t) {1+ + -} Q'(t1)} . (12)

Expression (12) for (I;) can be easily written under the more familiar form (13) by
performing the following steps:

1) evaluate the trace as a sum of diagonal matrix elements in the representation de-
fined by (3),

2) note that Q(t1) is diagonal in this representation and that (a|Q(t;)|a) = exp(—iwat1),
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3) note that (a|I;.|b) can be different from zero only if M, = M, + L.

<I—+> = — Z((Ili_”b) e-—iwbh(blj_la) eiwatl
a,b
. »-uz I(CL[I-,I,|b)12 eilwa—wi)ty (13)
a,b

This expression shows that the Fourier transform of (I.) after one pulse consists, as is
well known, of one line at each of the NMR frequencies (w, — wy,) of the spin system,
the intensity of each line being proportional to the corresponding value of |{a|ly|6)|*
The quantities {(w, — w;) are the rotating frame NMR frequencies, which are related to
the usual laboratory frame NMR frequencies by the obvious equation w(NMmR, lab.frame) =
W0 -+ W(NMR, rot.framc)-

11.2.4 Two pulse experiments.

Each two-pulse experiment begins in the same way as the one-pulse experiment de-
scribed above. At time ¢, a second pulse, described by the finite rotation operator R, is

applied to the spin system. At time ¢, + ¢, which means ¢; after the second pulse, the
density matrix will be given by '

. 1 =
pltr+12) = — —aQ(t2) RQ(t1) {1y + [} Q'(ta) R Q(t2), (14)
and the transverse magnetization by

(I.) = —aTt{l; Q(t2) RQ(t1) {{+ + I} Q'(t) R' Q'(t2)} . (15)

Using the steps which lead from (12) to (13), we can rewrite (15) under the following,
more usable, form of a double Fourier transform of (I ) with respect to the two inde-
pendent time variables ¢; and #;:

(L) = —a3(all, pybIRIA) (A |c)(c|RTa) e¥lemvadis gileremunt

ab,c.d

~a " {al It [b)(b| Rle) (el L4 |d) (d| Rfja) e 7ol gitvemw)ta . (16)

a,b,c,d

Figure 1 provides a diagram-like representation of one non-zero term of the first sum-
mation in (16) and one non-zero term: of the second summation.

Let us denote by w; the frequency which is associated with ¢, in this double Fourier
transform, and w, that associated with #,. The presence of matrix elements of 7 and J_
in (16) immediately shows that the double Fourier transform of (1) at w; and w; can
be different from zero only if w; is one of the NMR frequencies of the spin system and
wy is either one of these frequencies (first term in the rhs of (16)) or minus one of these
(second term of the rhs of (16)).

The absolute value of the relevant matrix elements of 7, and I_ can be obtained
experimentally from the ordinary NMR absorption spectrum, so that a complete set of
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Fig. 1. — Diagram representation of one non-zero term in each of the two summations in equation
(16). The direction around the loops corresponds to reading equation (16) from right to left.

two-pulse experiments, followed by a double Fourier transform, provides a lot of direct
information about the matrix elements of the finite rotation operator R and thus, also,
about the spin Hamiltonian. One should note, in this connection, that it is quite frequent
that a number of different transitions in a molecule do contribute to the same NMR line.
Whenever this happens, the quantities actually measured are of course the sums of all
the terms in (16) which correspond to given values of w; and w;. One should also note
that the finite rotation operators R do have less restrictive selection rules than 7, and
I_: for instance, if two eigenstates can be individually connected by a chain of non-zero
matrix elements of I, and I_, they are in general directly connected by a non-zero matrix
element of R.

Let us now imagine that the liquid under consideration contains different kinds of
molecules. The ordinary NMR spectrum will, then, be the superposition of the spectra
of each of the molecular species, and the response in a two pulse experiment will also
be the superposition of the responses of each species. In particular, the double Fourier
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transform of (f+) will contain no non-zero terms for which w; (or —w;) and w;, corre-
spond to NMR frequencies of different molecules. As a consequence of this remark, the
existence of a non-zero term in a double Fourier transform of (I ) implies that the two
relevant NMR frequencies do belong to the same molecule.

If the spins in a molecule can be sorted out in two different groups, such that no spin
in one group is coupled to any spin in the other group, then the two spin groups will
in fact behave as though they belonged to different molecules. The above discussion
then shows that the existence of a non-zero term in a double Fourier transform of (I )
implies that the two relevant frequencies belong to the same group of coupled spins. In
this way, the two-pulse technique can be used as an alternative to double resonance in
the sorting out of NMR lines in families.

11.3 MISCELLANEOUS NOTES.

[1.3.1 General organization of an experiniendt.

After each two-pulse sequence, the nuclear induction signal must be recorded as a func-
tion of ¢, after the second pulse; a large number of such two-pulse sequences must be
studied in order to examine the influence of the time separation ¢; between the two
pulses; the double Fourier transform must be evaluated, displayed, understood.

All this seems to imply the manipulation, storage, ..., of a prohibitively large quantity
of information. One possible way of actually performing the experiment would be the
following:

(a) after each two-pulse sequence, one computes the Fourier transform of the nuclear
induction signal at a few well chosen NMR frequencies wy, and these results are stored
on tape, together with the corresponding value of ¢,

(b) this procedure is repeated for a large number of values ol ¢, storing all the results
on tape,

(c) the tape is read, and a complete Fourier transform in w; is computed for each of
the chosen values of w».

I1.3.2 Sensitivity of the method.

Let us focus our attention on two NMR lines, at (w, —w;) and (w, — wq), which we shall
assume to be of equal intensities and to originate each from a single transition in the spin
system. A comparison of expressicns (13) and (16) then shows that the double Fourier
transform at (w, —wy ) and (w, — wq) is smaller than the single Fourier transform at each
of these frequencies by a factor (b| R|d){c| R|a) which is, roughly speaking, of order 1/,
where N is the number of eigenstates of the relevant group of coupled spins which can
be reached from |e) by means of the operator R. In many interesting cases, IV is not
larger than 10.

The factor {b|R|d){c|R'|a) is also roughly the ratio of signal-to-noise ratios which can
be achieved in a same length of time for the detection of the peaks in the double Fourier
transform and in the single Fourier transform.
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11.3.3 Some other advantages of the double pulse method.

- Very simple theory (no rf ON, except for two short pulses).

- No role played by spin-lattice relaxation, Overhauser eftect, ...

- No special problem in the case of two close-by lines.

- Direct quantitative information about the matrix elements of R.

- Lots of information gathered in a single run.

- Possibility of correcting for frequency or phase drift during the run, by software.

(End of the 1971 lecture notes)

ITI. Improved diagram representations (1993).

I have found diagrams of the type shown in Figure 1 very convenient to visualize the
structure of the various contributions to 2D and nD spectra, and also in attempts to
devise new pulse scquences generating such spectra. However, the improvements de-
scribed in the following subsections make these diagrams more readable, hence more
useful.

I11.1 EMPHASIZING THE ROLE OF TIME (i.e. DATE).

The closed loop structure of the diagrams in Figure 1 was meant to display the cyclic
property of equation (16) as far as states are concerned: reading from right to left, for
instance, one starts in state a, goes through states b, ¢ and d, and eventually comes back
to state a. This situation is more explicitly shown by the following intermediate between
equations (15) and (16):

(I+) =
—a> " {al L [BYXBIQ(t2) YOI RIGXAIQ(t)|d)d) T |eXelQ(t) le)el BT [a)al Q1(t2) a)
a,b,c.d
+ second term in equation (25).
(17)
Equations of types (15), (16) or (17) are also cyclic in time or, more exactly, in dafe:
reading the first term in the r.h.s. of equation (17) from right to left, one starts at the
date of the measurement, goes back in steps to the date immediately after the first pulse
(where the relevant part of p is I_), then proceeds forward in steps, eventually coming
back to the date of measurement of (I, ).

Discussions in which dates play an essential role will be clarified by the introduction of
an appropriate notation. In the present paper, we shall denote dates by the greek letter
7, and durations by the latin letter ¢ (in both cases with indices as needed). Evolution
operators will be written as U(7,, 1), with the usual property |(72)) = U(rz, 71)[¥ (1)),
and the relations with the notation of the 1971 notes (Eq. (6)) are

Q(t) — U(r+t,7) and Qi) — U(r,7+t) foranyr,  (18)
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where the interaction representation version of U(7,, 1) is given by (1) (see Eq. (4))
Uln,m) = V(1) U(r2,m1) V(7). (19)

The rotation operator R (Eq. (7)), describing the effects of a short rf pulse applied
at date 7, will also be written as an evolution operator acting between dates 7_ and 7,
(respectively immediately before and after the pulse), and the relations with the notation
of the 1971 notes (Eq. (7)) are

R — R(ry,7_) and RY — R(r_,14) (20)

With these changes in notation, also dencting by 7 (instead of 0) the date of the first
90° pulse, equation (17) takes the form

(I4) =
-—Q’Z (a1 If))(bIU(tg-i—tH-’T(), tl-Fr()+)|b)(()|R(t1-{-TO+, tr}-To_)]d)<d|U(tr’rT0_, To4)|d)
a,b,c,d
xAd| - [eXelU (104, trro- )|l e| R(tH7o-, titroy ) |aKal U (trros, tattitm) |a)
+ second term in equation (16).
(21)
The left part of Figure 2 provides a diagram-like representation of one non-zero term of
the summation displayed in equation (21), with the date explicitly shown as the horizon-
tal coordinate. This type of diagram makes the detailed date and state structure obvious,
and emphasizes the fact that, in each term of the sum, each evolution operator (of type
U or R) appears fwice with opposite order of the date arguments. Of course, the two
occurrences of one same operator do not describe independent transtformations, hence
the redundancy is undesirable for the sake of clarity, and one is tempted to lump the
offenders together as suggested by the diagram in the right part of Figure 2. One of the
many advantages of the “Liouville space” or “super-operator” presentation of quantum
mechanics is to provide a simple and natural way of achieving this goal.

I1I.2 USING A SUPERKET-SUPERBRA-SUPEROPERATOR FORMALISM.

HI1.2.1 Brief summary about superoperators.

Details about the point of view and notation used here can be found, for instance, in
references {5] and [6].

To each linear operator A (in practice, density operator or observable), we associate
a superket IA>5 where a non-traditional subscript s is used here to distinguish superkets

from standard kets. To each linear operator B, we also assaciate a superbra (B] using
the trace metric and requiring that

{B|A) = Tx(B'A) for every operator A. (22)

(") In reference [6], the role of V is played by an evolution operator involving two dates. 1 feel
that this was an unfortunate choice, and that a unitary operator involving a single date should be
used, as explained in references [7] and [8](appendix D).
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Fig. 2. — Improved diagram represcntations of one non-zero term in the first summation in equa-
tion (16). The horizontal coordinate now corresponds to time (i.e. date), running from right to
left to match the usual typography. The diagram on the left is for the usual ket-bra-operator for-
malism, the direction around the loop still corresponds to reading equations (16) or (21) from
right to left. The relation between the ordering of states and dates in this diagram and in equation
(21) is the following: (e|U(m;, 71)|f) is represented in the diagram by a segment along which one
goes from f towards e and from 7y towards 7> when moving in the direction shown by the arrow(s)
(irrespective of whether 7, is earlier or later than 72). The same convention holds for the oper-
ators K. With this conventian, it is no longer necessary to explicitly indicate the date arguments
of the operators in the diagram. The right part of the figure suggests a way of grouping the two
versions of each evolution operator corresponding to the same pair of dates, and gives hints about
the corresponding superoperator notation (see also Fig. 3).

Linear transformations of superkets will be described as superoperators, and denoted
here by script symbols, e.g. U, R or £, with the exception of the unit superoperator 1.
The action of a SllpBI‘OpCYd'LO ona Quperbra is defined by requiring that {A|G|B) =

(4419) |BY = {A] (9
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The set of superkets {|A,)} is a basis (in superket space) if it satisfies the orthonor-
mality and closure relations, respectively

{Ai|4;}=6;  end STAn Al = 1, (23)

An important particular type of transformation of operators consists in taking any
operator B in a sandwich between operators A and C, leading to the new operator F' =
ABC'. The superoperator counterpart of this can be written as

F) =

ABC) =D|B) where D=AxC, (24)

where the decomposable superoperator D is composed of the operators A and C.
With this notation, the usual Von Neumann equation of motion (hdp(7)/0r =
[H(7), p(7)] can be written as

ih %1[)(7)2 = L(r)|p(r)y  where  L(r) = (H(r) x L) — (L x H(1)), (25)

where £(7) is called the Liouvillian. The interaction representation transformation (4)
now takes the form

|A(T)) = VI(1)|A(r)), where V(1) =V(r)x VI(r) (26)

and V(1) = exp(—iwp 7 I,), and the motion in the absence of rf irradiation is described
by obvious extensions of (6) and (19):

l[)(’/"__)>S = U(Tz,’ri)lp(’rz»s where U(Tg,’l’l) = U(T2,71) X U(Tl,’rg). (27)

Using a similar notation for the rotation operators, we can write expression (15) for (1 )
under the form

<I—F> = —Ozs<1"+T ‘H(tz-l—tﬁfmt|+T()+)7é(trl-’Tn-|,,tl-lJr()_)Z:((tl-i“To_,T()+)$(f+ -+ f_)>s, (28)

where the date now increases systematically towards the future when the formula is read
from right to left, and the evolution during each time interval is completely described by
a single superoperator.

[I1.2.2 Diagrams for superoperators.

The formal expression (28) can be cvaluated by inserting closure relaticns (23) on both
sides of each superoperator:

(I) = =ad | (LA A (trttrtro, tirbmo )| 45045 R (rbros, bt )| Ai)
2,7,k,1

XS<AklZ:/(t1+’T()__,T()+)'A!2Q<A1|(f+ + I___)>S (29)

If the basis superkets ’Aiz are chosen to be eigensuperkets of the Liouvillian £, they are
also eigensuperkets of the evolution superoperator &, hence the terms in (29) will differ
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Fig. 3. — Superoperator diagrams. The notation is that of equation (29) in the particular case of
a level-shift basis constructed with the eigenstates of the Hamiltonian. The horizontal lines are
labeled by the superprojectors which appear in the closure relation (23) for superkets. The left-
right ordering in these diagrams is exactly the same as the typographical order in equation (29).
This figure shows the contribution to (I} for which the left part of Figure 2 gives an operator
diagram.

from zero only if ¢+ = 3 and k£ = [, considerably simplifying the expression. In the present
case, a suitable basis (in superket space) can be constructed with the set of level-shift
operators {|a)b|} of the ket basis (3) which diagonalizes the Hamiltonian. The superket
basis {||a)bl) (for all a and b)} diagonalizes the Liouvillian (25),

L{|aXbl) = ~{wa — wp)]|a)bl), (30)

and the evolution superoperator U,
U(Tz, Tl)l]axb}z — e——i(wu—wb)(‘rz—'rl) HGXbIZ’ (31)

as can be checked easily using the following general property of all superket bases con-
structed with level-shift operators (see for instance Ref. [6]):

{la)ol| (A x B)|leXdl), = (alA]c){d]B|b). (32)

One term of the summation (29), obtained with this superket basis, is shown in the
top part of Figure 3 and in the right part of Figure 2. With the help of the figures and
of the above expressions, one can casily verify the equivalence of expressions obtained
with the ket-bra-... and with the superket-superbra-... formalisms for problems in which
relaxation is ignored. As a further example of the use of superoperator diagrams, Figure
4 shows a more complete description of two-pulse experiments, in which the two pulses
are treated explicitly and the initial condition is described in terms of populations of the
eigenstates of the Hamiltonian.
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Fig. 4. — Superoperator diagrams drawn with the same conventions as in Figure 3. This figure
gives a more complete representation of a two-pulse experiment, starting with thermal equilibrium
for 7 <1y, and describing the two pulses Rq at date 7 and R at date ¢,+7q. The diagrams show
the contributions, arising from the equilibrium populations of the eigenstates b, ¢ and d of the
Hamiltonian, respectively to the left diagram of Figure 1 (top) and to the right diagram of Figure
1 (bottom).

However, in any attempt to take relaxation into account, the use of a superoperator
formalism is not a matter of elegance or personal preference any more, but one of ne-
cessity. Under these circumstances, the convenient bases in superket space are usually
not constructed from level shift operators, the corresponding expressions do not have
simple equivalents in terms of kets, bras and operators, but superoperator diagrams can
still be useful to organize and visualize the calculations.
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