


DYNAMICS IN 'RIGID' DISULFIDE PROTEINS

Gyula Batta,^a András Czajlik,^a Ádám Fizil,^a Dorottya Hajdu,^a Ágnes Batta,^a
Gai Jiawei,^a Zoltán Gáspári,^b László Galgóczy,^c Florentine Marx^d

^a Structural Biology Research Group, Dept. of Chemistry, University of Debrecen, Debrecen, Hungary
^b Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
^c Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
^d Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
✉ batta@unideb.hu

Small disulfide proteins (50-60 aa) like PAF are efficient antifungals and some have anti-*Candida* (PAFC) or anti-corona virus activity (PAF, PAFB).^[1] However, their mode of action is not yet fully understood.^[2] Their β-barrel tertiary structures are stabilised by 3-4 disulfide bridges lending apparent rigidity to the structures. Still, intrinsic dynamics persists as shown^[3] by NMR ¹⁵N-relaxation, ¹⁵N-CEST and MD calculations that are now supported by stress induced reversible unfolding and natural abundance ¹³C relaxation studies. Besides thermal unfolding we show DMSO induced transitions in PAF and variants as detected by NMR and DSC microcalorimetry.

Partially unfolded reversible states can be biologically relevant, e.g. connected to disulfide shuffling or other thiol related transitions, while dynamic intermediates can be preferred for conformational-selection mode of molecular recognition. Practical consequences may have impact on the validation of MD simulations or protein concentration measurements.

Figure 1. Solution structure of the antifungal protein PAF with three disulfide bonds.

Acknowledgements. The research was supported by the EU and co-financed by the European Regional Development Fund under the projects GINOP-2.3.2-15-2016-00008 and GINOP-2.3.3-15-2016-00004, and also by the Hungarian National Grant OTKA ANN 110 821, the Austrian Science Fund (I3132-B21) to F.M. L.G. is financed by the FK 134343 project of the Hungarian National Research, Development and Innovation Office - NKFIH.

REFERENCES

- [1] A. Huber, L. Galgóczy, G. Váradi, J. Holzknecht, A. Kakar, N. Malanovic, R. Leber, J. Koch, M. A. Keller, G. Batta, G. K. Tóth and F. Marx, *Biochimica Et Biophysica Acta-Biomembranes*, **2020**, 1862, 183246.
- [2] A. Czajlik, J. Holzknecht, L. Galgóczy, L. Tóth, P. Poór, A. Ördög, G. Váradi, A. Kuhbacher, A. Borics, G. K. Tóth, F. Marx and G. Batta, *International Journal of Molecular Sciences*, **2021**, 22, 1183.
- [3] Á. Fizil, Z. Gáspári, T. Barna, F. Marx and G. Batta, *Chemistry-A European Journal*, **2015**, 21, 5136–5144.