

HOW OXIDATIVE LESIONS AFFECT DNA SECONDARY STRUCTURE

Peter Podbevšek

Slovenian NMR center, National Institute of Chemistry, Ljubljana, Slovenia
✉ peter.podbevsek@ki.si

Guanine rich regions can adopt non-canonical four-stranded DNA structures called G-quadruplexes. Contiguous runs of guanines are especially susceptible to oxidation and contain the highest frequency of 8-oxo-7,8-dihydroguanine (^{oxo}G) - a major product of reactive oxygen species (ROS). We have analyzed the effect of ^{oxo}G on human telomeric (hTel) and promoter (bcl2) G-quadruplex structures. While substituting most G positions with ^{oxo}G proved detrimental, some positions within G-rich sequences were found to retain the G-quadruplex structure. Accommodation of ^{oxo}G at sites in *syn* or *anti* in non-substituted hTel G-quadruplex requires a minor structural rearrangement or a major conformation shift, respectively. Nevertheless, thermal stability of resulting G-quadruplex structures was typically reduced.^[1] However, in an isolated case a reduction of structural polymorphism and a surprising boost in thermal stability of a bcl2 G-quadruplex with ^{oxo}G was also observed.^[2] This was achieved by distinct hydrogen bonding properties of ^{oxo}G, which facilitate formation of an antiparallel basket-type G-quadruplex with a three G-quartet core and a G-^{oxo}G-C base triad. ^{oxo}G could act as an epigenetic modification, which alters DNA secondary structure and subsequently regulates gene expression by altering the binding of transcription factors to the DNA. This suggests a potential novel regulatory role of oxidative stress in gene transcription.

Figure 1. ^{oxo}G stabilizes the bcl2 G-quadruplex through extensive hydrogen bonding with loop nucleotides

Acknowledgements. This work was supported by the Slovenian Research Agency [J1-1704, P1-0242].

REFERENCES

- [1] S. Bielskute, J. Plavec, P. Podbevšek, *J. Am. Chem. Soc.* **2019**, *141*, 2594–2603.
- [2] S. Bielskute, J. Plavec, P. Podbevšek, *Nucleic Acids Res.* **2021**, *49*, 2346–2356.