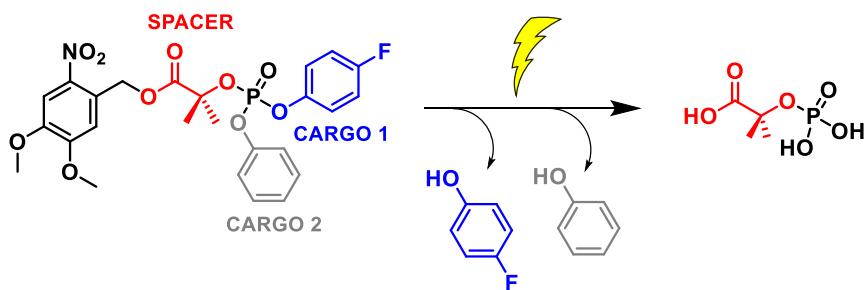


^{31}P NMR WITH *IN SITU* IRRADIATION FOR STUDY OF SELF-IMMOLATION

Markéta Tichotová,^a Petr Šimon,^b María García Gallardo,^b Ondřej Baszczyński,^{a,b}
Eliška Procházková^a


^a Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám.
542/2, 166 10 Prague, Czech Republic

^b Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague, Czech Republic

✉ marketa.tichotova@uochb.cas.cz

Self-immolation (SI) is a fragmentation of a molecule via intermolecular cyclization upon external stimuli. The activated intermediate spontaneously cyclizes while releasing a cargo which is used in a range of applications, such as smart materials or drug delivery systems. The phosphorus-based SI linkers stand above the "classical" carbamate linkers. They allow attachment of additional substituent, and, therefore, can be ideal candidates for a double cargo delivery.

We synthesized series of phosphate-based SI linkers able to release two cargos (Fig. 1). The SI was initiated by UV light, and the reaction course was monitored by ^{31}P NMR spectroscopy with *in situ* irradiation in real time. The structure of the intermediates was determined directly *in situ* combining ^{31}P and ^{13}C NMR spectra. Structural modifications allowed us to drive the sequential release of two cargos.^[1] This structure-activity relationship study enabled us to fine-tune the velocity of SI from 1 day up to 5 minutes, thus, greatly widened possible applications of the phosphate-based SI linkers. Moreover, these results were used for a rational design of new SI systems for a delivery of amine-containing drugs.^[2]

Figure 1. An example of a α -hydroxyisobutyrate SI spacer studied in this work.

Acknowledgements: This work was supported by the Experientia Foundation (O. B., Start-Up grant No. SG-2018-1) and by the Czech Science Foundation (O. B., grant No. 20-25137Y, and E. P., grant No. 21-23014S).

REFERENCES

- [1] P. Šimon, M. Tichotová, M. G. Gallardo, E. Procházková, O. Baszczyński, *Chem. Eur. J.* **2021**, *27*, 12763-12775.
- [2] M. Đud, M. Tichotová, E. Procházková, O. Baszczyński, *Molecules* **2021**, *26*, 5160.